Những câu hỏi liên quan
Đen đủi mất cái nik
Xem chi tiết
Nguyễn Tiến Đức
10 tháng 9 2018 lúc 19:41

tự ra câu hởi tự trả lời à bạn

Bình luận (0)
Đen đủi mất cái nik
10 tháng 9 2018 lúc 19:44

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

Bình luận (0)
bach nhac lam
Xem chi tiết
Trần Thùy Linh
25 tháng 4 2020 lúc 13:04

\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)

\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)

Áp dụng bđt AM-GM ta có

\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)
tthnew
25 tháng 4 2020 lúc 16:02

b) Mạnh hơn, và dễ dàng hơn là:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{\sum c\left(a-b\right)^2}{abc}\)

Nó tương đương với: \({\frac {{a}^{2}}{{b}^{2}}}+{\frac {{b}^{2}}{{c}^{2}}}+{\frac {{c}^{2} }{{a}^{2}}}+3-2\,{\frac {a}{b}}-2\,{\frac {b}{c}}-2\,{\frac {c}{a}} \geqq 0\)

Là hiển nhiên vì \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\)

Đơn giản:))

Bình luận (0)
tthnew
25 tháng 4 2020 lúc 16:46

a) Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow ab+bc+ca=1;0< a,b,c< 1\)

Cần chứng minh: \(P=\sum\frac{\frac{1}{a}-1}{\frac{1}{b^2}}=\sum\frac{b^2-ab^2}{a}\ge\sqrt{3}-1\)

Hay là: \(\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)\sqrt{ab+bc+ca}\ge\left(\sqrt{3}-1\right)\left(ab+bc+ca\right)+a^2+b^2+c^2\)

\(\Leftrightarrow\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)^2\left(ab+bc+ca\right)\ge\) \(\Big[ (\sqrt{3} -1) (ab+bc+ca) +a^2+b^2+c^2\Big]^2\)

Giả sử \(c=\min\{a,b,c\}\) và đặt \(a=c+u, \, b=c+v \, (u,\, v \geq 0)\)

Nếu mình không nhìn nhầm, sau khi rút gọn, nhóm lại theo biến c, bạn nhận được một cái gì đó gọi là hiển nhiên haha

Chúc may mắn, mình mới rút gọn thử thì thấy có vẻ hiển nhiên thật :))

Bình luận (0)
Tuấn Anh Nguyễn
Xem chi tiết
lily
Xem chi tiết
luyen hong dung
17 tháng 5 2018 lúc 16:57

Đặt \(x^2+2y^2=m;y^2+2z^2=n;z^2+2x^2=p\)

Ta có :\(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\)

\(=\left(1+1+1\right)\left(m+n+p\right)\left(\frac{a^3}{m}+\frac{b^3}{n}+\frac{c^3}{p}\right)\ge\left(a+b+c\right)^3=1\)

do đó \(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge1\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge\frac{1}{9}\)(đpcm)

Xong rồi đấy,bạn k cho mình nhé

Bình luận (0)
bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 22:21

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
11 tháng 2 2020 lúc 21:42
Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 11 2019 lúc 18:32

Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

Câu 2:

\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)

Tương tự, cộng lại và rút gọn sẽ có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
tthnew
25 tháng 4 2020 lúc 18:22

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

Bình luận (0)
zZz Cool Kid zZz
26 tháng 4 2020 lúc 11:26

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

Bình luận (0)
bach nhac lam
2 tháng 3 2020 lúc 23:47
Bình luận (0)
 Khách vãng lai đã xóa
Tú Nguyễn
Xem chi tiết
tthnew
13 tháng 2 2020 lúc 18:16

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
Xem chi tiết
Incursion_03
13 tháng 1 2019 lúc 15:06

Ta có bđt : \(\frac{m^2}{n}+\frac{p^2}{q}\ge\frac{\left(m+p\right)^2}{n+q}\)\(\left(m,n,p,q>0\right)\)(1)

Thật vậy \(\left(1\right)\Leftrightarrow\frac{m^2q+p^2n}{nq}\ge\frac{\left(m+p\right)^2}{n+q}\)

                       \(\Leftrightarrow m^2n\left(n+q\right)+p^2n\left(n+q\right)\ge nq\left(m+p\right)^2\)

                      \(\Leftrightarrow............\)(Phá tung ra + chuyển vế)

                      \(\Leftrightarrow\left(mq-pn\right)^2\ge0\)(Luôn đúng)

Áp dụng (1) ta được

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)(ĐPCM)

Dấu "=" khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

P/S: nếu hỏi tại sao chỗ bđt phụ lại đặt m,n,p,q khó nhìn thì hãy bảo tại cái đề bài đã có a,b,x,y rồi -.-

Bình luận (0)
tth_new
14 tháng 1 2019 lúc 9:58

Áp dụng BĐT Bunhiacopxki:

\(\left[\left(\frac{x}{\sqrt{a}}\right)^2+\left(\frac{y}{\sqrt{b}}\right)^2+\left(\frac{z}{\sqrt{c}}\right)^2\right]\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\)\(\ge\left(x+y+z\right)^2\)

Hay \(\left(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\right)\left(a+b+c\right)\ge\left(x+y+z\right)^2\)

Chia hai vế của BĐT cho (a + b + c),ta có đpcm: \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Bình luận (0)